by Jakob Straub
Updated on November 9, 2022
Natural Language Processing is how machines understand human language. As a branch of Artificial Intelligence, the field of Natural Language Processing (NLP) plays an important part in making interactions between humans and computers easier. We’ll give you an NLP overview and explain how machines mimic the very same way you learn a new language.
Natural Language Processing or NLP for short is present in everyday interactions you have with all sorts of machines. When you type a question into a search engine, NLP analyses your search intent to deliver relevant results. Virtual assistants such as smart speakers or chatbots rely on Natural Language Processing to interact with you. Further NLP applications are auto-generated translations and captions, sorting of messages, checking of spelling and grammar, recognition of handwritten or printed text, and text-to-speech output.
Is technology making language learning easier or harder?
Artificial Intelligence is a broad term for simulating or mimicking human intelligence. AI systems can have learning capabilities which follow the human process: learning by example, trial-and-error and problem solving. Machine Learning is the subset of AI that deals with applied algorithms teaching computers how to learn, often from large sets of data. Machine Learning is a process: the computer learns and improves how to do a task, but hasn’t been explicitly programmed to do the task a certain way.
Natural Language Processing uses Machine Learning to teach computers to understand and translate human language. The more they learn, the better they can make sense of text in spoken or written form, classify or rearrange it, translate it, and interact with it.
5 surprising stats about language learning
So how does Natural Language Processing work? Machine Learning is not much different from the way you learn a language with the one exception that computers are able to handle and review a lot more examples, data, that is, in a much shorter time.
Modern Machine Learning uses neural networks, which use artificial neurons for signal transmission modeled after the human brain. In simplified terms, a neural network learns by training itself to improve the accuracy of results through minimisation of errors. The learning process itself consists of reviewing large sets of examples.
The individual tasks Machine Learning neural networks perform to get better and better at Natural Language Processing are very similar to what you do when learning a new language. In other words, a computer follows the same “tricks” as humans to better understand language, although on a different scale.
Why you can’t learn a language in your sleep
Syntax is the linguistic term for the rules and principles regarding sentence structure and word order in a language. Natural Language Processing parses sentences to identify sentence structure and how words relate to each other. The following tasks are part of syntactical analysis:
The next big thing in language learning
In linguistics, semantic analysis relates syntactic structures to their meaning. It begins with the relationship between individual words, but also includes common word combinations, idiomatic speech, figures of speech and meaning in context.
As you might have guesses, semantic analysis is the part of Natural Language Processing which is harder to master for Artificial Intelligence. The main methods to look at meaning are:
The best ways to learn a language
Apart from the aforementioned intelligent assistants, translation, speech recognition and grammar tools, NLP has many more use cases such as:
Do humans still have an advantage over computers when it comes to learning and processing language? We’ll tell you why learning a language is essential for survival in an age of Artificial Intelligence!